1	Temporal Structures in Positron Spectra and Charge Sign Effects
2	in Galactic Cosmic Rays
3	- SUPPLEMENTAL MATERIAL -
4	(AMS Collaboration)

5 For references see the main text.

6 Detector.—AMS is a general purpose high energy particle physics detector in space. The 7 layout of the detector is shown in Fig. S1. The main elements are the permanent magnet, 8 the silicon tracker, four planes of time of flight (TOF) scintillation counters, the array of 9 anticoincidence counters (ACCs), a transition radiation detector (TRD), a ring imaging 10 Čerenkov detector (RICH), and an electromagnetic calorimeter (ECAL).

¹¹ The AMS coordinate system is concentric with the magnet. The x axis is parallel to the ¹² main component of the magnetic field and the z axis points vertically with z = 0 at the ¹³ center of the magnet. The (y-z) plane is the bending plane. Above, below, and downward-¹⁴ going refer to the AMS coordinate system. The central field of the magnet is 1.4 kG. Before ¹⁵ flight, the field was measured in 120 000 locations to an accuracy of better than 2 G. On ¹⁶ orbit, the magnet temperature varies from -3 to $+20^{\circ}$ C. The field strength is corrected with ¹⁷ a measured temperature dependence of $-0.09\%/^{\circ}$ C.

The tracker has nine layers, the first (L1) at the top of the detector, the second (L2)¹⁹ just above the magnet, six (L3 to L8) within the bore of the magnet, and the last (L9) just ²⁰ above the ECAL. L2 to L8 constitute the inner tracker. Each layer contains double-sided ²¹ silicon microstrip detectors which independently measure the x and y coordinates. The ²² tracker accurately determines the trajectory of cosmic rays by multiple measurements of ²³ the coordinates with a resolution in each layer of 10 μ m for |Z|=1 particles in the bending ²⁴ (y) direction. Together, the tracker and the magnet measure the rigidity of charged cosmic ²⁵ rays. Each layer of the tracker provides an independent measurement of charge Z with a ²⁶ resolution of $\sigma_Z = 0.092$ charge units for |Z|=1 particles. Overall, the inner tracker has a ²⁷ resolution of $\sigma_Z = 0.049$ charge units for |Z|=1 particles.

²⁸ Two TOF planes are located above the magnet (upper TOF) and two planes are below ²⁹ the magnet (lower TOF). The overall velocity ($\beta = v/c$) resolution has been measured to be ³⁰ $\sigma(1/\beta) = 0.04$ for |Z|=1 particles. This discriminates between upward- and downward-going ³¹ particles. The pulse heights of the two upper planes are combined to provide an independent ³² measurement of the charge with an accuracy $\sigma_Z = 0.06$ charge units for |Z|=1 particles. ³³ The pulse heights from the two lower planes are combined to provide another independent ³⁴ charge measurement with the same accuracy.

The TRD separates e^+ from protons using a Λ_{TRD} estimator constructed from the ratio of the log-likelihood probability of the e^{\pm} hypothesis to that of the p hypothesis in each or layer [19].

The three dimensional imaging capability of the 17 radiation length ECAL allows for an accurate measurement of the positron energy and of the shower shape. The e^{\pm} energy, E, to is calibrated at the top of AMS. An ECAL estimator Λ_{ECAL} [19] is used to differentiate e^{\pm} to differentiate e^{\pm} from p by exploiting their different shower shapes.

Positrons traversing AMS were triggered as described in Ref. [19]. The trigger efficiency
is 100% above 3 GV, decreasing to 83% at 1 GV, and is stable over time within errors.

⁴⁴ Monte Carlo simulated events were produced using a dedicated program developed by ⁴⁵ the collaboration based on the GEANT4-10.3 package [30]. The program simulates elec-⁴⁶ tromagnetic and hadronic interactions of particles in the material of AMS and generates ⁴⁷ detector responses. The digitization of the signals is simulated precisely according to the ⁴⁸ measured characteristics of the electronics. The simulated events then undergo the same ⁴⁹ reconstruction as used for the data.

⁵⁰ Event Selection.—AMS has collected 1.9×10^{11} cosmic ray events from May 20, 2011 to ⁵¹ November 2, 2021. The collection time used includes only those seconds during which the ⁵² detector was in normal operating conditions and, in addition, AMS was pointing within 40° ⁵³ of the local zenith and the ISS was outside of the South Atlantic Anomaly. Because of the ⁵⁴ geomagnetic field, the daily collection time T_i^j of the positron fluxes, Φ_{e^+} , increases with ⁵⁵ rigidity and is $(1.3 - 3.2) \times 10^3$ s at 1 GV, $(4.0 - 7.3) \times 10^3$ s at 2 GV, $(1.6 - 2.2) \times 10^4$ s at ⁵⁶ 5 GV, $(2.9 - 3.7) \times 10^4$ s at 10 GV, $(5.4 - 6.6) \times 10^4$ s at 20 GV, and, above 30 GV, reaches ⁵⁷ $(6.0 - 7.2) \times 10^4$ s.

Positron events are required to be downward going ($\beta > 0.8$), to have a reconstructed so shower in the ECAL with a matched track in the tracker and the TRD. The track is required to pass through either L1, L2 or L9. Track fitting quality criteria such as a $\chi^2/d.o.f. < 10$ both in the bending and non-bending planes are applied to ensure good accuracy of the track reconstruction. The charge measurements in the TOF and the tracker are required to be consistent with |Z|=1.

In this Letter, the ECAL energy is used to calculate the positron absolute rigidity R. The rigidity is required to be greater than the local geomagnetic cutoff. The local geomagnetic cutoff was calculated as the maximum geomagnetic cutoff within the AMS field of view from AMS data by measuring the proton flux at each geomagnetic position. The details of this study will be included in a future publication [31]. To estimate the associated systematic error, we increase the calculated value of the geomagnetic cutoff by 10%. This results in a systematic error on the fluxes of < 2% at 1 GV reducing to a negligible level r_1 (< 0.4%) above 2 GV. We have verified that using a geomagnetic cutoff derived from the romst recent International Geomagnetic Reference Field (IGRF) model [32] with external non-symmetric magnetic fields [33] during the most disturbed geomagnetic periods does not re introduce observable changes in the flux values nor in the systematic errors.

Events satisfying the above criteria are classified into two categories: positive and negative re rigidity data samples. In this Letter we only consider the positive rigidity data sample, which comprises mostly positrons, background protons, and charge confusion electrons, that re is, electrons that are reconstructed in the tracker with positive rigidity due to the finite re tracker resolution or due to interactions with the detector materials.

⁸⁰ The combination of information from the TRD, tracker, and ECAL enables the efficient ⁸¹ separation of the positron signal events from these background sources for each rigidity bin ⁸² on a daily basis. A cut on Λ_{ECAL} is applied to remove the bulk of the proton background. ⁸³ The residual proton background contribution is ~ 1% in the positron signal region and is ⁸⁴ estimated using a template fit to the TRD estimator Λ_{TRD} . The electron background is ⁸⁵ estimated from the Monte Carlo simulation by accounting for the daily variation of the Φ_{e^-} . ⁸⁶ It amounts to ~ 1% of the positron signal over the entire rigidity range. After background ⁸⁷ subtraction, 3.4×10^6 positrons are identified in the rigidity range from 1.00 to 41.9 GV.

Year	Range [BR]	Range [Date]
2011	2426 - 2433	May 20, $2011 - December 16, 2011$
2012	2434-2447	December 17, 2011 – December 28, 2012
2013	2448 - 2461	December 29, $2012 - January 10, 2014$
2014	2462 - 2471	January 11, 2014 – September 29, 2014
2015	2473 - 2488	November 29, 2014 – January 9, 2016
2016	2489-2502	January 10, 2016 – January 21, 2017
2017	2503 - 2515	January 22, 2017 – January 7, 2018
2018	2516-2528	January 8, 2018 – December 24, 2018
2019	2529 - 2540	December 25, 2018 – October 29, 2019
2020	2543 - 2554	January 26, 2020 – November 18, 2020
2021	2554-2567	November 19, 2020 – November 2, 2021

TABLE SA. The range of each year from 2011 to 2021 in BRs and dates.

⁸⁸ Wavelet Analysis.—The continuous wavelet transform W_n of a time series x_n with equal ⁸⁹ time interval δt is defined as [36]:

$$W_{n}(s) = \sum_{n'=1}^{N} x_{n'} \psi^{*} \left[\frac{(n'-n)\delta t}{s} \right],$$
 (S1)

⁹⁰ where the * indicates the complex conjugate of the wavelet function ψ , s is the period, and ⁹¹ n is the time index of the wavelet. In this study, we chose the Morlet wavelet, consisting of ⁹² a plane wave modulated by a Gaussian:

$$\psi(\eta) = \pi^{-1/4} e^{i6\eta} e^{-\eta^2/2},\tag{S2}$$

⁹³ where η is a nondimensional time parameter. The wavelet power is given by $|W_n(s)|^2$. The ⁹⁴ wavelet time-frequency power spectrum shows the temporal distribution of the power for ⁹⁵ each period s. The time-averaged power spectrum over a certain time interval is

$$\overline{W}_{n}^{2}(s) = \frac{1}{n_{2} - n_{1} + 1} \sum_{n=n_{1}}^{n_{2}} |W_{n}(s)|^{2},$$
(S3)

 $_{96}$ where n_1 and n_2 are the beginning and ending indexes of the analyzed time interval, respec- $_{97}$ tively.

In both the wavelet time-frequency power spectrum and time-averaged power spectrum, 99 the normalized power is defined by the wavelet power divided by the variance σ^2 of the time 100 series x_n in the corresponding time interval:

$$\sigma^2 = \frac{\sum_{n=n_1}^{n_2} (x_n - \overline{x})^2}{n_2 - n_1},$$
(S4)

¹⁰¹ where \overline{x} is the mean value of the time series. This normalization by variance is applied to ¹⁰² show the strength of the periodicities.

¹⁰³ To determine significance levels above which the power represents periodic structures, ¹⁰⁴ Monte Carlo simulations are used to assess the statistical significance against backgrounds ¹⁰⁵ which are generated by the lag-1 autoregressive process [36]:

$$y_n = \alpha y_{n-1} + z_n,\tag{S5}$$

¹⁰⁶ where z_n is a Gaussian with zero mean and width such that the variance of the simulated ¹⁰⁷ time series is equal to the measured time series. Here, α is the lag-1 autocorrection obtained ¹⁰⁸ from the measured time series x_n :

$$\alpha = \frac{\sum_{n=1}^{N-1} (x_n - \overline{x}) (x_{n+1} - \overline{x})}{\sum_{n=1}^{N} (x_n - \overline{x})^2},$$
(S6)

where N is the number of measured points and \overline{x} is the mean value of the time series. For each period, the 95% confidence level is determined by the power exceeded by 5% of the power values calculated from the simulated background. The 95% confidence level has different shapes due to different solar modulation effects as a function of rigidity. Hysteresis Analysis.—The hysteresis occurs over the time span from 2011 to 2018 as Hysteresis Analysis.—The hysteresis occurs over the time span from 2011 to 2018 as two time intervals with the same electron flux, Φ_{e^-} , one before 2014-2015 and one after, with the most significant difference in Φ_{e^+} . From this, we determine that the maximum difference in the rigidity range from 1.00 to 1.71 GV is at $\Phi_{e^-} = 13.89 \text{ m}^{-2} \text{sr}^{-1} \text{s}^{-1} \text{GV}^{-1}$ which occurs in 2013 and 2016 (points A and B in Fig. S16(a), with positron fluxes $\Phi_{e^+}^A$ and $\Phi_{e^+}^B$ respectively). The variation in the positron flux is $\Phi_{e^+}^B/\Phi_{e^+}^A = 1.754 \pm 0.044$. The errors in both Φ_{e^+} and Φ_{e^-} are accounted for in the error calculation of the ratio. To obtain the error calculation of the ratio. To obtain the intervals and determine that the maximum difference for these remaining intervals is at $\Phi_{e^-} = 19.71 \text{ m}^{-2} \text{sr}^{-1} \text{s}^{-1} \text{GV}^{-1}$ which occurs in 2018 (points C and D in the positron flux is $\Phi_{e^+}^B/\Phi_{e^+}^C = 1.711 \pm 0.042$. The analysis is repeated for the rest of the rigidity bins, the rigidity bins, the see Fig. S16(b-f).

Figure S17 shows the evaluated positron flux ratios $\Phi_{e^+}^B/\Phi_{e^+}^A$ and $\Phi_{e^+}^D/\Phi_{e^+}^C$ as a function 128 of rigidity. As seen, the difference in Φ_{e^+} decreases with increasing rigidity. In particular, at 129 [7.09–8.48] GV, with $\Phi_{e^+}^B/\Phi_{e^+}^A = 1.066 \pm 0.020$ and $\Phi_{e^+}^D/\Phi_{e^+}^C = 1.107 \pm 0.021$, the combined 130 significance of the difference in Φ_{e^+} before and after 2014-2015 is 5.7 σ . At [8.48 – 11.0] GV, 131 with $\Phi_{e^+}^B/\Phi_{e^+}^A = 1.062 \pm 0.024$ and $\Phi_{e^+}^D/\Phi_{e^+}^C = 1.049 \pm 0.020$, the combined significance of 132 the difference in Φ_{e^+} before and after 2014-2015 is 3.1 σ .

In summary, the hysteresis is observed with a significance greater than 5σ below 8.48 GV and with 3.1σ at [8.48 - 11.0] GV.

Hysteresis Structures Analysis.— The hysteresis exhibits structures during the flux dips in 2015 and 2017, see Fig. 3 and S18 for the rigidity range from 1.00 to 1.71 GV. To analyze the significance of the hysteresis structures in 2015, we select the two time intervals with the same Φ_{e^+} , one in the first half (E) and one in the second half (F) of region IV, with electron fluxes $\Phi_{e^-}^E$ and $\Phi_{e^-}^F$ respectively, which show the most significant difference in Φ_{e^-} . From this, we determine that the maximum difference for the rigidity interval [1.00–1.71] GV is at $\Phi_{e^+} = 0.965 \text{ m}^{-2} \text{sr}^{-1} \text{s}^{-1} \text{GV}^{-1}$ and the variation in electron flux is $\Phi_{e^-}^F/\Phi_{e^-}^E = 0.844 \pm 0.018$, see Fig. S18(c). The errors in both Φ_{e^-} and Φ_{e^+} are accounted for in the error calculation of the ratio. To obtain the overall significance of the hysteresis structure, we repeat the procedure for remaining non-overlapping time intervals of region IV and determine that the maximum difference for [1.00–1.71] GV is at $\Phi_{e^+} = 1.197 \text{ m}^{-2} \text{sr}^{-1} \text{GV}^{-1}$, indicated as and G and H in Fig. S18(c), with electron fluxes $\Phi_{e^-}^G$ and $\Phi_{e^-}^H/\Phi_{e^-}^G$ deviate from unity. The overall significance of the hysteresis structure corresponding to the dip in 2015 is 10σ . The analysis is repeated for the dip in 2017 (V), as shown in Fig. S18(d), with the four scorresponding points J, K, L, M, with electron fluxes $\Phi_{e^-}^J, \Phi_{e^-}^K, \Phi_{e^-}^L, and \Phi_{e^-}^H$ respectively. The variation in electron flux is $\Phi_{e^-}^J/\Phi_{e^-}^R = 0.910 \pm 0.032$ for $\Phi_{e^+} = 2.423 \text{ m}^{-2} \text{sr}^{-1} \text{s}^{-1} \text{GV}^{-1}$, and $\Phi_{e^-}^L/\Phi_{e^-}^R = 0.928 \pm 0.022$ for $\Phi_{e^+} = 2.710 \text{ m}^{-2} \text{s}^{-1} \text{GV}^{-1}$. The significance of the scorresponding hysteresis structure is 4σ .

FIG. S1. The AMS detector showing the main elements and their functions. AMS is a TeV precision, multipurpose particle physics magnetic spectrometer in space. It identifies particles and nuclei by their charge Z, energy E, and momentum P or rigidity (R = P/Z), which are measured independently by the Tracker, TOF, RICH and ECAL. The ACC counters, located in the magnet bore, are used to reject particles entering AMS from the side. The AMS coordinate system is also shown. The x axis is parallel to the main component of the magnetic field and the z axis points vertically with z = 0 at the center of the magnet.

FIG. S2. The 3-day averaged Φ_{e^+} (light blue points) together with the 3-day averaged Φ_{e^-} (magenta points), measured over the entire period for four rigidity bins from 1.00 to 41.9 GV. The gaps in the fluxes are due to detector studies and upgrades. Φ_{e^-} are divided by different scale factors as indicated. The scale factors are chosen such that Φ_{e^-} and Φ_{e^+} for each rigidity bin are at the same magnitude on average during 2014 and 2015. As seen, Φ_{e^+} exhibits short-term variations on the scale of days to months, and long-term variations on the scale of years, and the relative magnitude of these variations decreases with increasing rigidity. Below 8.5 GV, (abc), Φ_{e^+} decreases more slowly with time than Φ_{e^-} from 2011 to 2014, rises more quickly from 2014 to 2017, rises more slowly from 2017 to mid-2020, and again, decreases more slowly from mid-2020 to 2021. In the rigidity range [22.8-41.9] GV (d), the difference between the time evolution of Φ_{e^+} and Φ_{e^-} becomes negligible.

FIG. S3. The 3-day averaged Φ_{e^+} (light blue points) together with the 3-day averaged Φ_p (yellow points), measured over the entire period for four rigidity bins from 1.00 to 41.9 GV. Days with Solar Energetic Particle events are excluded from Φ_p . The gaps in the fluxes are due to detector studies and upgrades. Φ_p are divided by different scale factors as indicated. The scale factors are chosen such that Φ_{e^+} and Φ_p for each rigidity bin are at the same magnitude on average during 2014 and 2015. As seen, both fluxes present a similar behavior with time in short-term and long-term timescales, and at low rigidity (ab), Φ_{e^+} exhibits a larger variation than Φ_p . At higher rigidities (c), the difference in their respective time evolution decreases and becomes negligible in the rigidity range [22.8-41.9] GV (d).

FIG. S4. The 3-day averaged Φ_{e^+} (light blue points) in the rigidity range from 1.00 to 2.97 GV, measured from January 1, 2016 to January 1, 2017 together with (a) 3-day averaged Φ_{e^-} (magenta points) and (b) 3-day averaged Φ_p (yellow points) in the same rigidity range and time period. Vertical dashed lines separate Bartels rotations. Φ_{e^-} and Φ_p are divided by different scale factors chosen such that Φ_{e^+} , Φ_{e^-} , and Φ_p are at the same magnitude on average. The contiguous Φ_{e^+} data points are connected with lines to guide the eye. As seen in (a), Φ_{e^+} shows time variations that are different from those observed in Φ_{e^-} . On the contrary (b), Φ_{e^+} and Φ_p show similar time variations.

FIG. S5. (a) Φ_{e^+} measured from May 20, 2011 to December 16, 2011 for the rigidity interval from 1.00 to 2.97 GV. Vertical dashed lines separate Bartels rotations. (b) Wavelet normalized power spectrum. The dashed curve indicates the 95% confidence level.

FIG. S6. (a) Φ_{e^+} measured from December 17, 2011 to December 28, 2012 for the rigidity interval from 1.00 to 2.97 GV. Vertical dashed lines separate Bartels rotations. The vertical solid line separates two equal time intervals where the power spectra are calculated. (b,c) Wavelet normalized power spectra averaged (b) from December 17, 2011 to June 22, 2012 and (c) from June 23, 2012 to December 28, 2012. Dashed curves indicate the 95% confidence levels.

FIG. S7. (a) Φ_{e^+} measured from December 29, 2012 to January 10, 2014 for the rigidity interval from 1.00 to 2.97 GV. Vertical dashed lines separate Bartels rotations. The vertical solid line separates two equal time intervals where the power spectra are calculated. (b,c) Wavelet normalized power spectra averaged (b) from December 29, 2012 to July 5, 2013 and (c) from July 6, 2013 to January 10, 2014. Dashed curves indicate the 95% confidence levels.

FIG. S8. (a) Φ_{e^+} measured from January 11, 2014 to September 29, 2014 for the rigidity interval from 1.00 to 2.97 GV. Vertical dashed lines separate Bartels rotations. (b) Wavelet normalized power spectrum. The dashed curve indicates the 95% confidence level. Note that in the time interval from September 30, 2014 to November 28, 2014, AMS was performing detector studies and no data was collected.

FIG. S9. (a) Φ_{e^+} measured from November 29, 2014 to January 9, 2016 for the rigidity interval from 1.00 to 2.97 GV. Vertical dashed lines separate Bartels rotations. The vertical solid line separates two approximately equal time intervals where the power spectra are calculated. (b,c) Wavelet normalized power spectra averaged (b) from November 29, 2014 to July 4, 2015 and (c) from July 5, 2015 to January 9, 2016. Dashed curves indicate the 95% confidence levels.

FIG. S10. (a) Φ_{e^+} measured from January 10, 2016 to January 21, 2017 for the rigidity interval from 1.00 to 2.97 GV. Vertical dashed lines separate Bartels rotations. The vertical solid line separates two equal time intervals where the power spectra are calculated. (b,c) Wavelet normalized power spectra averaged (b) from January 10, 2016 to July 16, 2016 and (c) from July 17, 2016 to January 21, 2017. Dashed curves indicate the 95% confidence levels.

FIG. S11. (a) Φ_{e^+} measured from January 22, 2017 to January 7, 2018 for the rigidity interval from 1.00 to 2.97 GV. Vertical dashed lines separate Bartels rotations. The vertical solid line separates two approximately equal time intervals where the power spectra are calculated. (b,c) Wavelet normalized power spectra averaged (b) from January 22, 2017 to July 2, 2017 and (c) from July 3, 2017 to January 7, 2018. Dashed curves indicate the 95% confidence levels.

FIG. S12. (a) Φ_{e^+} measured from January 8, 2018 to December 24, 2018 for the rigidity interval from 1.00 to 2.97 GV. Vertical dashed lines separate Bartels rotations. (b) Wavelet normalized power spectrum averaged from January 8, 2018 to July 20, 2018. The dashed curve indicates the 95% confidence level. Owing to interruptions in data taking due to the AMS upgrade, the data after July 20, 2018 is not included in the periodicity analysis.

FIG. S13. Φ_{e^+} measured from December 25, 2018 to October 29, 2019 for the rigidity interval from 1.00 to 2.97 GV. Vertical dashed lines separate Bartels rotations. Owing to interruptions in data taking due to the AMS upgrade, the 2019 data is not included in the periodicity analysis.

FIG. S14. Φ_{e^+} measured from January 26, 2020 to November 18, 2020 for the rigidity interval from 1.00 to 2.97 GV. Vertical dashed lines separate Bartels rotations. Owing to interruptions in data taking due to the AMS upgrade, the 2020 data is not included in the periodicity analysis.

FIG. S15. Φ_{e^+} measured from November 19, 2020 to November 2, 2021 for the rigidity interval from 1.00 to 2.97 GV. Vertical dashed lines separate Bartels rotations. Owing to interruptions in data taking due to the AMS upgrade, the 2021 data is not included in the periodicity analysis.

FIG. S16. The moving averages over 14 BRs and a step of 1 day of Φ_{e^-} versus Φ_{e^+} , both in units of $[m^{-2}sr^{-1}s^{-1}GV^{-1}]$, for six consecutive rigidity bins from 1.00 to 8.48 GV. Different colors indicate different years from 2011 to 2021. White squares (A and C) and white triangles (B and D) mark the two pairs of time intervals used to evaluate the significance of the hysteresis (see description in this Supplemental Material for details). The horizontal error bars are the quadratic sum of the statistical and time-dependent systematic errors of Φ_{e^+} . Vertical error bars are the quadratic sum of the statistical and time-dependent systematic errors of Φ_{e^-} .

FIG. S17. The positron flux ratios $\Phi_{e^+}^B/\Phi_{e^+}^A$ (light blue points) and $\Phi_{e^+}^D/\Phi_{e^+}^C$ (yellow points) measured at two pairs of time intervals with the same Φ_{e^-} as a function of rigidity from 1.00 to 22.8 GV (the first six rigidity bins are shown in Fig. S16). The error bars are the quadratic sum of the statistical and time-dependent systematic errors of Φ_{e^+} and correlated errors from Φ_{e^-} . The horizontal dashed line indicates unity. $\Phi_{e^+}^B/\Phi_{e^+}^A$ and $\Phi_{e^+}^D/\Phi_{e^+}^C$ deviate from unity with a combined significance greater than 10σ at the first rigidity bin [1.00 - 1.71] GV and greater than 5σ for each rigidity bin below 8.48 GV (indicated by the arrow).

FIG. S18. (a) Daily Φ_{e^+} (light blue points) together with daily Φ_{e^-} (magenta points), measured for the rigidity interval from 1.00 to 1.71 GV over the entire period. For display purposes, the Φ_{e^-} are divided by a scale factor such that Φ_{e^+} and Φ_{e^-} are at the same magnitude on average during 2014 and 2015. Dashed lines, I, II, and III indicate the location of sharp dips in Φ_{e^+} and Φ_{e^-} , and the colored bands IV and V mark the time intervals around the dips in 2015 and 2017. (b) Φ_{e^-} versus Φ_{e^+} , both calculated with a moving average of 2 BRs and a step of 1 day. Fluxes are in units of $[m^{-2}sr^{-1}s^{-1}GV^{-1}]$. Different colors indicate different years from 2011 to 2021. The location of I, II, and III correspond to the flux dips indicated in (a), and the white boxes IV and V to the time intervals around the dips in 2015 and 2017. (c) Detail of the structure in the time interval IV. White squares (E and G) and white triangles (F and H) mark the two pairs of time intervals used to evaluate the significance of the structure IV in the hysteresis (see description in this Supplemental Material for details). (d) Detail of the structure in the time interval V. White squares (J and L) and white triangles (K and M) mark the two pairs of time intervals used to evaluate the significance of the structure V in the hysteresis (see description in this Supplemental Material for details). The horizontal and vertical error bars are the quadratic sum of the statistical and time-dependent systematic errors of Φ_{e^+} and Φ_{e^-} , respectively.

FIG. S19. (a) Daily Φ_{e^+} (light blue points) together with daily Φ_p (yellow points), measured for the rigidity interval from 1.00 to 1.71 GV over the entire period. For display purposes, Φ_p are divided by a scale factor such that Φ_{e^+} and Φ_p are at the same magnitude on average during 2014 and 2015. Dashed lines, I, II, and III indicate the location of sharp dips in the Φ_{e^+} and Φ_p , and the colored bands IV and V mark the time intervals around the dips in 2015 and 2017. (b) Φ_p versus Φ_{e^+} , both calculated with a moving average of 2 BRs and a step of 1 day. Fluxes are in units of $[m^{-2}sr^{-1}s^{-1}GV^{-1}]$. Different colors indicate different years from 2011 to 2021. The location of I, II, and III correspond to the flux dips indicated in (a), and the white boxes IV and V to the time intervals around the dips in 2015 and 2017. (c) Detail of the Φ_p to Φ_{e^+} correlation in the time interval IV. (d) Detail of the Φ_p to Φ_{e^+} correlation in the time interval V. As seen, no significant structures are found.

FIG. S20. The relative variation of the daily Φ_{e^+} , $\frac{\Phi_{e^+} - \langle \Phi_{e^+} \rangle}{\langle \Phi_{e^+} \rangle}$, versus the relative variation of the daily Φ_p , $\frac{\Phi_p - \langle \Phi_p \rangle}{\langle \Phi_p \rangle}$, for six consecutive rigidity bins from 1.00 to 5.90 GV. Days with Solar Energetic Particle events are excluded for rigidity bins below 3 GV. The horizontal and vertical error bars are the quadratic sum of the statistical and time-dependent systematic errors of Φ_{e^+} and Φ_p respectively. The solid red line is the result of the fit of Eq. (2) to the data in each rigidity bin. The χ^2 per degree of freedom (χ^2 /D) of the fits are also shown in the figure.